The thickness model is explained in Theoretical and Numerical Combustion, T. Poinsot, D. Veynante. If you want more information about theory, please refer to this book.
The thickness value implemented in CERFACS Cantera version is constant. It is set by writing :
from cantera import *
import matplotlib.pylab as plt
import numpy as np
p = 101325 # pressure
tin = 300.0 # unburned gas temperature
phi = 0.8 # equivalence ratio
gas = Solution('BFER_methane.yaml')
m = gas.n_species
x = np.zeros(m,'d')
fuel_species = 'CH4'
ifuel = gas.species_index(fuel_species)
io2 = gas.species_index('O2')
refine_grid = "disabled"
tol_ss = [1.0e-5, 1.0e-8] # [rtol atol] for steady-state problem
tol_ts = [1.0e-5, 1.0e-8] # [rtol atol] for time stepping
loglevel = 1 # amount of diagnostic output (0 to 5)
%%capture
n_points = 1000
F = [1.0, 2.0, 5.0, 10.0, 15.0, 20.0]
temperature = []
position = []
for ind_thick, thick in enumerate(F):
gas.set_equivalence_ratio(phi, 'CH4:1', 'O2:1.0, N2:3.76')
gas.TP = tin, p
initial_grid = np.linspace(0, 0.02, int(1000/thick))
f = FreeFlame(gas, grid=initial_grid)
# This is where thickening is applied
f.flame.thick = thick
f.energy_enabled = True
f.flame.set_steady_tolerances(default=tol_ss)
f.flame.set_transient_tolerances(default=tol_ts)
f.inlet.X = gas.X
f.inlet.T = tin
#f.set_refine_criteria(ratio = 7.0, slope = 1, curve = 1)
f.set_max_jac_age(50, 50)
f.set_time_step(5.e-06, [10, 20, 80]) #s
#f.set_refine_criteria(ratio = 2.0, slope = 0.02, curve = 0.02, prune = 0.01)
f.solve(loglevel, refine_grid)
temperature.append(f.T)
position.append(f.flame.grid)
fig = plt.figure(figsize=(18,16))
a=fig.add_subplot(111)
for ind_thick, thick in enumerate(F):
a.plot(position[ind_thick],temperature[ind_thick], label="F = "+str(thick))
plt.title(r'$T_{adiabatic}$ vs. Position', fontsize=25)
plt.xlabel(r'Position [m]', fontsize=20)
plt.ylabel("Adiabatic Flame Temperature [K]", fontsize=20)
plt.xticks(fontsize=15)
plt.yticks(fontsize=15)
#a.xaxis.set_major_locator(MaxNLocator(10)) # this controls the number of tick marks on the axis
plt.legend(fontsize=15)